LV45 Technical Data Sheet 1 of 2

45cm Aluminium Scaffolding Beams

Part #	Detail	Description	Weight	Part #	Detail	Description	Weight
LV45_0500		0.5m 45cm Beam	3.0 Kg	LV45_5000		5.0m 45cm Beam	26.0 Kg
LV45_1000		1.0m 45cm Beam	6.0 Kg	LV45_6000		6.0m 45cm Beam	34.5 Kg
LV45_2000		2.0m 45cm Beam	12.0 Kg	LV45_8000		8.0m 45cm Beam	46.0 Kg
LV45_3000		3.0m 45cm Beam	17.5 Kg	LVBS006	0 0 0 0 0 0	6 Hole Spigot Piece	1.2 Kg
LV45_4000		4.0m 45cm Beam	22.0 Kg	LVQR12_60	\leftrightarrow	Spigot Pins	-

Spliced Beam : Compression Chord Braced at 0.5m centres		
Beam : Compression Chord Braced at 1.0m centres	32.1 kN.m	All Cases. 51.5 kin
Spliced Beam : Compression Chord Braced at 1.0m centres	31.0 kN.m	
Beam : Compression Chord Braced at 2.0m centres		
Note - The moment capacity of spliced beams with compr		
unspliced beam		
The Design Free stars	4.05	

The Design Engineer should choose one of the applicable Safety Factors - 1.3, 1.5 or 1.65.

Operation Object Leading at 0 Fee Operation		Span (m)					
Compression Chord Lacing at 0.	4.0	6.0	8.0	10.0	12.0		
Lisife mely. Distributed Logal	(kN/m ULS)	16.0	8.6	4.9	2.3	1.5	
Uniformly Distributed Load	SLS Deflection (mm)	13	31	53	61	80	
Mid Oners Deist Lead	(kN ULS)	46.9	30.9	22.9	13.0	10.5	
Mid Span Point Load	SLS Deflection (mm)	17	31	52	57	80	
Two Deint Lee de et Third Deinte	(kN ULS, each)	26.6	23.4	14.9	8.6	6.4	
I wo Point Loads at Third Points	SLS Deflection (mm)	16	38	53	64	80	
	(kN ULS, each)	17.7	15.6	10.2	6.2	4.5	
Three Point Loads at Quarter Points	SLS Deflection (mm)	14	36	53	64	80	
Point Load Every Node (Equivalent UDL)	(kN/m ULS)	16.0	10.5	4.9	2.5	1.5	
· · · · · · · · · · · · · · · · · · ·	SLS Deflection (mm)	13	37	53	64	80	

NOTES

1. Loads stated are ultimate limit state based on the provision of simple supports at each bearing. Refer to Sheet 2 of 2 for load locations.

2. Loads for 4m, 6m and 8m spans are based on unspliced beams. 10m and 12m beams are assumed to be spliced mid span.

3. Resistances stated are design ultimate resistances (X_{d,r})

4. To convert to 'safe working' loading/resistance divide the stated load/resistance by 1.3, 1.5 or 1.65.

5. Loads should be applied at node locations only, with the exception of the 'Uniformly Distributed Load' which is calculated allowing for local member bending effects.

6. 'Point Load Every Node' is the equivalent UDL applied as point loads at each node (ie each PL = stated kN/m x 0.5m chord node c/c). No local member bending effects are considered.
7. Supporting calculations are in accordance with BS EN 1999-1-:2007+A2:2013.

8. Spliced beams must be connected using both bolt holes in each side of the spigot piece using the supplied bolts/pins.

9. Lacing tubes are to be connected with Class A Right Angle couplers. Bracing is to be connected with Class A Swivel couplers.

The information provided is based on prevailing legislation and/or testing. LCP Ltd reserves the right to make technical changes, users should ensure that only current revisions of this Technical Data Sheet are used. The published data refers to original genuine LCP Ltd materials only. © LCP Limited. No unauthorised use, copy or disclosure is to be made.

LV45 Technical Data Sheet 2 of 2

45cm Aluminium Scaffolding Beams

Companyation Chand Lasian et 4	Span (m)					
Compression Chord Lacing at 1	4.0	6.0	8.0	10.0	12.0	
Liniferenche Distribute del se d	(kN/m ULS)	12.6	6.4	3.7	2.3	1.5
Uniformly Distributed Load	SLS Deflection (mm)	10	23	40	61	80
Mid Onen Deint Leed	(kN ULS)	43.9	25.8	18.0	13.0	10.5
Mid Span Point Load	SLS Deflection (mm)	16	26	41	57	80
Two Deint Londo et Third Deinte	(kN ULS, each)	22.0	16.3	12.7	8.6	6.4
Two Point Loads at Third Points	SLS Deflection (mm)	13	27	46	64	80
Thurse Deinstein de las Ouerstein Deinste	(kN ULS, each)	17.7	11.8	8.4	6.2	4.5
Inree Point Loads at Quarter Points	SLS Deflection (mm)	14	27	44	64	80
Point Load Every Node (Equivalent UDL)	(kN/m ULS)	16.0	7.5	4.1	2.5	1.5
	SLS Deflection (mm)	13	27	44	64	80

Operation Object Locie and A	Span (m)					
Compression Chord Lacing at 2	4.0	6.0	8.0	10.0	12.0	
Liniferraly Distributed Lond	(kN/m ULS)	5.6	2.5	1.4	0.9	0.6
Uniformly Distributed Load	SLS Deflection (mm)	4	9	15	24	34
Mid Onen Deint Leed	(kN ULS)	15.8	9.3	6.5	4.9	4.0
Mid Span Point Load	SLS Deflection (mm)	6	9	15	22	30
Two Deintheads at Third Deinte	(kN ULS, each)	7.9	5.9	4.6	3.2	2.8
Two Point Loads at Third Points	SLS Deflection (mm)	5	10	16	24	35
Thurse Deinst Leads at Overstein Deinste	(kN ULS, each)	6.8	4.2	3.0	2.3	1.9
Inree Point Loads at Quarter Points	SLS Deflection (mm)	5	10	16	24	34
Point Load Every Node (Equivalent UDL)	(kN/m ULS)	6.4	2.7	1.5	0.9	0.6
	SLS Deflection (mm)	5	10	16	24	34

Applied Load Locations					
	Uniformly Distributed Load		With an kN/m UD chord, maintena		
	Mid Span Point Load		0.5m c/c		
	Two Point Loads at Third Points		2.0m c/c		
	Three Point Loads at Quarter Points				
	Point Load Every Node (Equivalent UDL)				

Maintenance Loading

With an applied unfactored loading of 1 kN/m UDL as a continuous load to the top chord, representing a typical light maintenance loading, the LV45 series beams can achieve the following maximum spans:

0.5m c	c/c Cl	nord F	Restrain	ts 1	2.0)m

.0m c/c Chord Restraints 12.0m

2.0m c/c Chord Restraints 8.0m

This sheet is to be read in conjunction with LV45 Technical Data Sheet 1 of 2

The information provided is based on prevailing legislation and/or testing. LCP Ltd reserves the right to make technical changes, users should ensure that only current revisions of this Technical Data Sheet are used. The published data refers to original genuine LCP Ltd materials only. © LCP Limited. No unauthorised use, copy or disclosure is to be made.